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ABSTRACT  

Software projects frequently experience 

unexpected overtime as a result of 

uncertainties and risks arising from 

evolving requirements and the pressure to 

meet the software product's time-to-

market. This phenomenon induces stress 

among developers and may lead to 

substandard quality. The present study 

introduces a memetic algorithmic 

methodology to address the issue of 

overtime planning in software 

development projects. The issue is framed 

as a trivariate optimisation problem with 

the objective of minimising overtime 

hours, project makespan, and cost. The 

formulation effectively models the process 

of mistake production and dissemination 

over time through the use of simulation. 

The Multi-Objective Shuffled Frog-

Leaping Algorithm (MOSFLA), which 

has been specifically developed for the 

purpose of overtime planning, is utilised to 

address the given problem. The 

researchers conducted empirical 

evaluation studies on six real-life software 

project datasets, employing three 

commonly utilised multi-objective quality 

indicators. The findings of the study 

indicate that MOSFLA exhibited superior 

performance compared to conventional 

overtime management systems in software 

engineering projects across all quality 

measures. Specifically, MOSFLA 

achieved values of 0.0118, 0.3893, and 

0.0102 for Contribution (IC), 

Hypervolume (IHV), and Generational 

Distance (IGD), respectively. In all project 

situations, the proposed approach yielded 

superior outcomes in terms of IHV and 

IGD compared to the state-of-the-art 

approach (NSGA-IIV). Nevertheless, the 

proposed methodology exhibited superior 

performance compared to NSGA-IIV in 

around 67% of project instances in terms 

of IC. 

Keywords: Human Resource 

Management, Software Engineering 

Projects, Metric-Based Approaches 

 

INTRODUCTION  

The field of Software Engineering 

focuses on addressing optimisation 

challenges in the development of software, 

aiming to enhance its speed, cost-

effectiveness, reliability, scalability, 

responsiveness, maintainability, and 

testability [1]. Therefore, the successful 

completion of software engineering 

projects within the designated timeframe 

and budgetary constraints is contingent 

upon the implementation of effective 

software project management 

methodologies [2]. Software Project 

Management (SPM) encompasses a range 

of essential tasks, including cost 

estimation, project planning (including 

project scheduling and personnel), and 

quality management. These activities play 

a crucial role in determining the success of 

a software project [1]. These tasks 

frequently require the identification of a 

suitable equilibrium between objectives 

that are typically in competition and 
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conflict with one another. The SPM, or 

Software Project Management, is often 

conceptualised as a challenge including 

project scheduling and staffing [3]. This 

problem is typically addressed through the 

utilisation of the Search-Based Software 

Engineering (SBSE) technique. In the 

field of Search-Based Software 

Engineering (SBSE), a software 

engineering challenge is conceptualised as 

a search problem with the objective of 

identifying the most suitable solution that 

satisfies specific adequacy requirements. 

The objective is to reframe challenges in 

software engineering as optimisation 

problems based on search methods, and 

thereafter employ a range of meta-

heuristic techniques to address these 

problems. 

Software Project Scheduling (SPS) is an 

optimisation issue that aims to identify an 

optimal timetable for a software project. 

The objective is to ensure that both 

precedence and resource limitations are 

met, while minimising the overall project 

cost, which includes human salary and 

project duration [4]. The problem of SPS 

has been addressed by the utilisation of 

meta-heuristic optimisation techniques [3, 

5-8]. Meta-heuristic algorithms are 

employed to explore a vast input space in 

pursuit of an optimal solution, with the 

guidance of a fitness function. The fitness 

function serves as a means to articulate the 

objectives and guide the investigation into 

potentially optimal regions within the 

search space. The algorithms employed in 

this context serve the purpose of 

automating and providing 

recommendations for software engineers, 

aiding them in making informed decisions 

during the planning phase of a software 

project. Nevertheless, it may not always be 

feasible to expect automated technologies 

to generate the initial project design. 

According to Ferrucci et al. (2019), their 

study findings indicated that practitioners 

expressed a preference for relying on their 

own judgements when creating the initial 

project plan. This preference stemmed 

from the fact that the allocation of staff to 

different work packages involves 

numerous decisions that are specific to the 

human and domain context. Consequently, 

an automated approach is deemed 

insufficiently equipped to effectively 

handle these decision-making processes. 

However, it is common for engineers to 

face the challenge of unguided initial 

project plans, which frequently result in 

developers having to work extra, often 

without prior planning, in order to fulfil 

project deadlines. There are multiple 

causes that can contribute to the necessity 

of working overtime. Several reasons 

contribute to the challenges faced in 

project management, including but not 

limited to: evolving and time-sensitive 

needs, shortened timelines, complexities 

in measuring project progress, and the 

imperative to align with the market's 

demand for timely delivery of new 

features. Nevertheless, the primary 

reasons that have been documented as 

contributing to unplanned overtime are a 

delayed alteration in requirements and a 

shortened time frame for product release 

[1, 10]. 

As anticipated, research has 

demonstrated that the allocation of 

excessive and unscheduled overtime has 

negative consequences on the well-being 

of developers and the quality of the 

software they generate. Nishikitani et al. 

[11] and Karita et al. [12] have reported an 

observation indicating a positive 

association between overtime work, long 

shifts, and stress indicators, such as 

sadness, rage, hostility, as well as an 

increase in equilibrium and motor-related 

issues among IT workers. In relation to the 

impact on software development, Akula 

and Cusick [13] discovered that extended 

periods of overtime labour have been 

shown to result in heightened levels of 

stress. Consequently, this heightened 

stress has been found to correlate with an 

increase in the number of defects observed 
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in software projects. The consequences of 

these impacts are indicative of 

substandard software, as developers 

persistently prioritise expeditious task 

completion over quality. The 

aforementioned fragments of evidence 

derived from scholarly sources emphasise 

the necessity of implementing a decision 

support methodology that can effectively 

manage overtime planning while 

considering factors such as staff 

productivity, cost, project duration, and 

product quality. 

In order to address the adverse 

consequences of extended overtime in 

software development projects, engineers 

in the industry employ several strategies 

known as Overtime Management 

Strategies (OMS). In their study, Ferrucci 

et al. (2019) identified and discussed three 

prevalent overtime tactics employed by 

software engineers in the business. These 

strategies include Margarine (MAR) 

management, Critical Path Management 

(CPM), and Second Half (SH) 

management strategies. In the context of 

the MAR system, the allocation of 

overtime hours is distributed uniformly 

among all activities included in the 

schedule. In contrast, the Critical Path 

Method (CPM) incorporates additional 

hours into the schedule's critical path, but 

in the Schedule Half (SH) approach, 

overtime hours are allocated to the latter 

portion of the schedule to compensate for 

delays that occurred in the initial phase. 

However, there is a limited amount of 

research that has been conducted to 

effectively address the Overtime Planning 

Problem (OPP) using the SBSE approach. 

The present methodologies utilise genetic 

multi-objective evolutionary algorithms, 

specifically NSGA-II and its various 

adaptations [9, 10, 14]. As far as current 

information indicates, there has been no 

prior research conducted on the utilisation 

of alternative Multi-Objective 

Optimisation algorithms for the purpose of 

overtime planning in software projects. 

Hence, it is imperative to do further 

research on overtime planning procedures 

that have the potential to surpass existing 

overtime management tactics and state-of-

the-art approaches. 

The purpose of this study is to evaluate 

the efficacy of the memetic multi-

objective evolutionary algorithm in 

addressing the issue of software project 

overtime planning. Specifically, the Multi-

purpose Shuffled Frog Leaping Algorithm 

(MOSFLA) is employed as the primary 

approach for tackling this problem. In the 

context of optimisation problems, 

memetic algorithms have demonstrated 

superior efficiency and effectiveness 

compared to traditional evolutionary 

algorithms in certain problem domains [2, 

15, 16]. Memetic algorithms can be 

conceptualised as a combination of a 

population-based global technique and a 

local search conducted by each individual 

within the population. Consequently, there 

is a growing recognition of memetic 

algorithms, notably in renowned 

combinatorial optimisation problems that 

have witnessed successful attainment of 

optimal solutions for huge instances, 

whereas alternative meta-heuristics have 

proven inadequate in achieving equivalent 

outcomes. 

The subsequent section of this paper is 

structured in the following manner: 

Section 2 provides an overview of relevant 

literature pertaining to the scheduling of 

software projects over extended periods of 

time. Section 3 of the study was dedicated 

to the elucidation of the optimisation 

problem formulation. Section 4 of this 

study is dedicated to the proposed 

framework, which outlines the 

computational search technique utilised 

for addressing the optimisation problem 

(OPP). Additionally, this section discusses 

the evaluation metrics employed to assess 

the performance of the approach. Section 

5 of the manuscript outlines the 

experimental configuration and provides 

an in-depth analysis of the obtained 
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results. The subsequent section, Section 6, 

serves as the concluding segment of the 

study. 

 

RELATED WORKS  

The impact of overtime on software 

quality was investigated by Akula and 

Cusick [13] through a statistical survey 

conducted on four real-life software 

projects. The recorded data for each 

project included the number of scheduled 

work hours, the actual overtime hours, and 

the number of flaws. The results of the 

statistical study indicated a positive 

correlation between the number of defects 

and the amount of extra hours in all of the 

projects that were examined. The study 

revealed a positive correlation between the 

number of defects and the extent of 

overtime, indicating that as extra hours 

grow, the defect count also tends to rise. 

Additionally, it was noted that prolonged 

overtime leads to increased stress levels 

among workers, which in turn negatively 

impacts the project's development. 

Despite the existing literature on the 

subject, there is a noticeable scarcity of 

research studies pertaining to the use of 

search-based meta-heuristic algorithms in 

the context of software project overtime 

planning. This investigation identified a 

limited number of three scholarly papers 

that have employed Search-Based 

Software Engineering (SBSE) to address 

the challenge at hand. The search-based 

optimisation approach to software 

overtime planning was introduced by 

Ferrucci et al. (9). The research paper 

introduced the conceptualization of 

software project overtime planning as a 

multi-objective optimisation problem. The 

aim of this study is to examine the impact 

of several overtime allocation choices on 

the project schedule. Each choice is 

designed to minimise project duration, 

overtime hours, and the risk of exceeding 

the project's allocated resources. This will 

be achieved by utilising three risk 

assessment models. 

The computational search approach 

adopted in this study was NSGA-IIv, a 

variation of NSGA-II that incorporates a 

crossover operator specifically tailored for 

the overtime planning problem. In order to 

evaluate the efficacy of the 

aforementioned approach, the researchers 

conducted an empirical investigation 

including six authentic software projects. 

The experimental findings indicate that 

the proposed technique exhibits a 

statistically significant improvement 

compared to the conventional NSGA-II 

method in 76% of the conducted trials. 

Furthermore, the proposed methodology 

demonstrates superior performance when 

compared to the industry's prevailing 

overtime planning tactics. Nonetheless, 

the formulation employed by the authors 

neglected to consider the adverse impact 

of overtime on the quality of software, 

despite the existence of actual studies in 

the literature (references 11 and 13) that 

have demonstrated that the effort 

expended in rectifying the additional 

errors introduced by developers working 

overtime surpasses the gains in 

productivity. 

In a recent study, Sarro et al. (2014) 

expanded upon the research conducted by 

Ferrucci et al. (2009) by introducing an 

adaptive approach for selecting meta-

heuristic operators. The objective of this 

approach was to enhance the performance 

of algorithms within the context of the 

same problem formulation. The research 

introduced a novel iteration of NSGA-II, 

referred to as Adaptivevsc, that integrates 

the crossover operator proposed by 

Ferrucci et al. [9] with the adaptive genetic 

operators of NSGA-IIa, as proposed by 

Nebro et al. [17]. Furthermore, the 

research presented a novel approach for 

dynamically selecting genetic operators 

during the search process. The findings 

derived from empirical investigations 

conducted on eight authentic software 
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projects demonstrated that the suggested 

adaptive methodology exhibited superior 

performance compared to state-of-the-art 

methodologies in 93% of the trials. 

Furthermore, it was observed that the 

proposed technique consistently beat 

existing overtime planning strategies in all 

of the experiments, indicating a 

statistically significant improvement. 

The approach presented by Ferrucci et 

al. [9] was further developed by Barros 

and Araujo [10] to incorporate the impact 

of overtime work on software quality. The 

research presented a novel approach to the 

OPP by incorporating simulation 

techniques to assess the impact of an 

augmented quantity of defects resulting 

from overtime on the project's length and 

expense. The primary aim of their research 

is to employ optimisation and simulation 

techniques in order to investigate the 

impact of various overtime planning rules 

on both the length and expense of the 

project. The computational search 

approach employed in this study was 

NSGA-II, which was utilised to optimise 

the planning process over time. The 

primary objective of this optimisation was 

to minimise the overall project length, 

project makespan, and cost. The 

methodology was contrasted with 

overtime tactics commonly employed in 

the industrial sector, as well as a 

comparable model that does not exhibit 

the detrimental impacts of overtime on 

product quality. The experimental 

findings demonstrated that NSGA-II 

exhibited superior performance compared 

to both the margarine and critical path 

overtime techniques. Nevertheless, the 

implementation of the Second-Half 

overtime management method yielded 

favourable outcomes when applied to 

NSGA-II within the specified framework. 

This discovery necessitates the 

development of a more effective search 

methodology that has the potential to 

surpass all existing techniques in terms of 

performance within the same framework. 

 

This study closely aligns with the 

research conducted by Barros and Araujo 

[10] in terms of problem formulation. 

However, it diverges in terms of the 

computational search strategy employed, 

utilising a memetic algorithm known as 

MOSFLA. 

 

Problem Formulation  

The present work utilises a decision 

problem model proposed by Barros and 

Araujo [10] to address the issue of 

overtime planning. This model 

incorporates the complexities associated 

with error production and propagation 

resulting from overtime, employing 

simulation techniques. This methodology 

calculates the potential influence of 

escalated defect counts resulting from 

overtime on the overall length and expense 

of the project. 

Consider a project schedule that may be 

described as a Directed Acyclic Graph 

(DAG). This DAG consists of a set of 

nodes, denoted as WP = {wp1, wp2, ..., 

wpn}, which represent the Work Packages 

involved in the project. Additionally, there 

is a set of edges, denoted as DP = {(wpi, 

wpj): 1 ≤ i ≤ n, 1 ≤ j ≤ n}, which represents 

the dependencies among the Work 

Packages.Every work package (WP) is 

distinguished by the level of effort needed 

to finish it, which is quantified in terms of 

function points (FP). Each dependency in 

the Dependency Structure Matrix (DSM) 

signifies that the initiation of the 

development of a certain work package 

(wpj) is contingent upon the conclusion of 

the analysis phase of another work 

package (wpi). 

Based on the empirical estimation of 

average productivity of 27.8 

FP/developer-month for Information 

Systems (IS) projects [18], the expected 

length of a work package may be 

determined by considering the size of the 

work package in FP. 
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The equation (1) represents the duration 

(D) of an event, which is a function of the 

effort (wpi) divided by a constant value of 

27.8. 

The project's minimum duration is 

determined by the Critical Path, which 

refers to the longest path in terms of 

duration. The utilisation of the critical 

route methodology has been a 

longstanding practise in the construction 

of software project schedules for several 

decades. Nevertheless, the primary 

concern lies in the analysis of the impacts 

of overtime assignments on the schedule, 

with the objective of minimising project 

makespan, expense, and the use of 

overtime. In the context of error 

propagation within software development 

projects, Jones (18) discovered that 

developers, on average, introduced four 

errors per functional point (FP) during the 

analysis, design, and coding phases of a 

component. This phenomenon has an 

impact on the length of testing procedures. 

In regards to mistake production resulting 

from overtime, Abdel-Hamid and 

Madnick [19] established a model to 

examine the correlation between the extent 

of overtime invested by developers and the 

quantity of faults introduced into the 

software they generate. According to this 

model, developers who work 10 hours per 

day are estimated to introduce 20% more 

errors compared to those who work 

regular shifts of 8 hours per day. 

Additionally, developers working 12 

hours per day are estimated to introduce 

50% more errors. The complex link 

between overtime and error generation 

rates, along with the dynamics of error 

transmission, gives rise to a compound 

model that necessitates the use of an 

optimisation technique driven by 

simulation. Hence, this research integrates 

optimisation and simulation techniques to 

effectively address the issue of software 

overtime planning optimisation. 

 

 

Optimization Objectives  

The OPP formulation in this study tries 

to minimize:  

(3)  

• Amount of Overtime Hours (OH) = 

∑𝑛 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 (𝑤𝑝) (2)  

𝑖=1 

• Project Make Span (PMS) = ∑𝑤𝑝∈𝐶𝑃 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑤𝑝𝑖)  

𝑖  

• Project Cost (PC) = ∑𝑛 𝐶 (𝑤𝑝) + 𝐶 

(𝑤𝑝) (4) 𝑖=1𝑟 𝑖 𝑜 𝑖  

Subject to the constraints: 

0 ≤ 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖) ≤ 

max𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖), 1 ≤ i ≤ n  

DPviolation< 1.  

 

The variable "Overtime Hours (OH)" 

represents the cumulative number of hours 

spent on activities beyond the regular 

working hours, as determined by the 

computational search technique. The 

Project Makespan (PMS) is determined as 

the longest path in the graph that adheres 

to precedence constraints. It is computed 

by summing the durations of the activities 

along this path. The Critical Path (CP) 

refers to the sequence of activities in a 

project that determines the overall 

duration of the project. The duration of 

each activity is denoted as wp_i. The 

computation of the time of an activity is 

derived from the simulation, since it 

incorporates the integration of error 

production and propagation dynamics into 

the schedule of the project. The Project 

Cost (PC) is determined by aggregating 

the costs associated with each activity. 

These costs are contingent upon the 

number of regular and overtime hours 

expended by the developer in order to 

achieve the anticipated results. The cost 

law proposed by Barros and Araujo [10] in 

Brazil is employed for the purpose of 

representing the cost associated with a 

particular activity. It may be inferred that 

in the given scenario, the cost of a regular 

working hour is denoted as C. 
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Furthermore, each of the initial two 

overtime hours incurs a cost of 120% of C, 

while each subsequent two hours of 

overtime incur a cost of 150% of C. The 

variable C_r in objective (iii) represents 

the cost of regular working hours, while 

C_o represents the cost of overtime hours. 

The possible solution for the Overtime 

Project Problem (OPP) is represented as a 

collection of integer values that indicate 

the amount of additional hours to be 

allocated per day for each individual Work 

Package (WP) in the project schedule. The 

representation consists of a linear array of 

numbers, where each integer corresponds 

to the number of overtime hours allocated 

for a specific activity indexed in the array. 

It is vital to acknowledge that the duration 

of standard working hours and the 

maximum allowable extra hours are 

contingent upon the specific country's 

regulations and policies. The study 

conducted by Barros and Araujo [10] 

establishes a standard working schedule of 

8 hours each day, with a maximum 

allowance of 4 hours for overtime. 

 

PROPOSED FRAMEWORK  

This part outlines the computational 

search technique utilised for solving the 

overtime planning problem as described in 

part 3. Additionally, it introduces the 

evaluation metrics that will be employed 

to assess the effectiveness of the suggested 

computational approach. 

 

Computational Search Approach  

In this study, we utilize a computational 

search method known as the Multi-

Objective Shuffled Frog-Leaping 

Algorithm (MOSFLA). This algorithm is 

built on the framework of the original 

SFLA algorithm published by Eusuff and 

Lansey [20]. Additionally, we incorporate 

an archiving strategy that is based on the 

adaptive niche methodology proposed by 

Cui [21]. The niche strategy is employed 

as a means of preserving the non-

dominated solutions. The algorithm 

enhances the population sorting technique 

and memetic evolution process in order to 

accommodate Multi-Objective 

Optimisation (MOO). 

As a result of the parallel evolution 

method employed by the algorithm, the 

solutions undergo evolutionary changes in 

divergent directions. This characteristic 

renders MOSFLA particularly suitable for 

addressing MOO challenges, such as the 

one under investigation in this paper. The 

MOSFLA method is depicted in Figure 1, 

as modified by Yinghai et al. [22]. The use 

of MOSFLA has demonstrated good 

outcomes across several domains, 

including typical optimisation test 

problem cases [23], the reservoir flood 

management problem [22], and the robot 

path planning problem [24]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Flowchart of MOSFLA [22].  

 

MOSFLA Design for Overtime 

Planning Problem  

In order to address the overtime 

planning problem, the method for adapting 

the MOSFLA is formulated as follows: 

• Population creation and sorting 

strategy  
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Due to the stochastic nature of 

MOSFLA, the population of viable 

solutions, referred to as "frogs," is 

generated in a random manner. The 

determination of whether a solution is 

accepted or rejected is contingent upon its 

ability to satisfy the maximum overtime 

limits. In the SFLA (Shuffled Frog 

Leaping Algorithm), frogs are arranged in 

a descending order based on their 

performance values, which are determined 

by a fitness function. In the context of 

single-objective problems, it is customary 

to establish the performance value by 

directly assigning it as the value of the 

objective function. The application of this 

approach is not feasible for multi-

objective problems. Numerous 

methodologies have been employed in 

scholarly works to assess the performance 

value in the context of multi-objective 

problems. 

Several methodologies have been 

employed in this study, including the 

utilisation of the Pareto dominance 

relation to evaluate the solutions. 

Additionally, the crowding distance of 

individual solutions has been considered. 

Furthermore, a combination of the 

crowding distance inside the non-

dominated solutions and the hamming 

distance between dominated and non-

dominated solutions in the population has 

been investigated [22, 23, 25]. The present 

study utilises a novel hybrid multi-

objective fitness function that incorporates 

both the crowding distance of individual 

frogs and the rank gained from sorting 

Pareto fronts. This fitness function is 

applied to evaluate the fitness of each 

solution within the population. 

To be more precise, the rank is 

determined through the implementation of 

the subsequent procedure: 

In the first step, the non-dominated 

solutions present in the initial population 

are assigned to the first rank, also known 

as rank 0, and subsequently eliminated. 

 

In the second step, the subsequent non-

dominated solutions are identified from 

the remaining solutions and incorporated 

into the subsequent rank, which is 

designated as rank 1. These solutions are 

also removed in accordance with the 

appropriate measures. 

The aforementioned technique is 

iterated until the population no longer 

contains any additional solutions. 

Following the completion of the 

ranking process, the computation of the 

crowding distance (Cd) is conducted for 

all solutions within the same rank. 

Assuming that the multi-objective 

optimisation (MOO) entails a set of 

predefined goals, the crowding distance of 

each frog is computed as follows: 

 
𝐶 =∑𝑟 |𝑃[𝑖+1]·𝑓 −𝑃[𝑖−1]·𝑓| (5) 𝑑 𝑘=1 𝑘 𝑘  

 

𝐶𝑑 is the crowding distance of the ith 

frog in the rank set, P[i+ 1] fk and P[i- 1] 

fk are kth objective function values of two 

adjacent frogs.  

The total multi-objective fitness 

function presented by Alejandro et al. (24) 

is computed using the following formula. 

The term is characterised as: 

 

𝑀𝑂𝐹𝑖𝑡 = 1 (6) 2𝑟𝑎𝑛𝑘 + 1  

1+ 𝐶𝑑  

 
Memplex formation 

 

The sorted frogs are stored in an array X 

= {P(i), i = 1, . . . ,n}. X is then partitioned  

into m memeplexes, i.e., Y1,Y2, . . . ,Ym, 

each containing n frogs, such that: 

𝑌𝑘 = [𝑃(𝑖)𝑘|𝑃(𝑖)𝑘 = 𝑃[𝑘 + 𝑚(𝑖 − 1)]], 𝑖 = 

1,..𝑛 𝑘 = 1,..𝑚 (7)  

In this way, for m = 4, frog in position 1 

goes to memeplex 1, position 2 to 

memeplex 2, position 3 to memeplex 3, 

position 4 to memeplex 4. Then frog in 

position 5 goes to memeplex 1, and so on.  
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Memetic evolution in memeplex  

Within every memeplex, there exists a 

process of memetic evolution wherein 

virtual frogs undergo improvement 

through the transfer and sharing of memes, 

with the aim of enhancing the performance 

of the least successful frog. In the initial 

implementation of the Structured Fitness 

Landscape Algorithm (SFLA), the 

evolutionary process involves enhancing 

the fitness of the least optimal frog inside 

each memeplex. 

 
𝑑=𝑟𝑎𝑛𝑑∗(𝑥𝑏 −𝑥𝑤), 𝑛𝑒𝑤𝑥𝑤=𝑜𝑙𝑑𝑥𝑤 +𝑑 (8)  

 

where 𝑥𝑏 = local best frog in the 

memeplex and xw = worst frog in the 

memeplex.  

 
The current evolutionary progression 

exhibits inefficiency due to its restriction 

of the new frog's habitat to the region 

bounded by xw and 𝑥𝑏. This measure 

solely reinforces an enhancement in the 

local bound. To expand the evolutionary 

scope of newxw beyond its local confines, 

the researchers Yinghai et al. [22] have 

suggested implementing the following 

evolutionary step. 

 

𝑑=2∗𝑟𝑎𝑛𝑑∗(𝑥𝑏 −𝑥𝑤), 𝑛𝑒𝑤𝑥𝑤 =𝑜𝑙𝑑𝑥𝑤+𝑑 

(9)  

This step increases the evolutionary 

space by a factor of two, allowing the 

position of newxw to reach a value of 

2(xb−𝑥𝑤). Fundamentally, the process of 

evolution has the capability to generate 

solutions that surpass the existing optimal 

solution within every memplex. 

To achieve local evolution, the first frog 

(𝑦𝑘[1]) in the kth memeplex is designated 

as the local best frog (𝑥𝑏), whereas the last 

frog (𝑦𝑘[n]) is designated as the worst frog 

(𝑥𝑤). In order for frogs to undergo 

evolutionary progress towards Pareto 

optimality, the global best frog (xg) is 

designated as a solution that is randomly 

selected from the current archive set. 

Additionally, the location of the least 

optimal frog is modified using Equation 

(9). The calculation of objective function 

values is performed, followed by a 

comparison of the Pareto dominance 

connection between newxw and oldxw. 

• If 𝑛𝑒𝑤𝑥𝑤 dominates 𝑜𝑙𝑑𝑥𝑤, then yk[n] 

is replaced with newxw.  

• If 𝑜𝑙𝑑𝑥𝑤 dominates 𝑛𝑒𝑤𝑥𝑤, then go to 

iii;  

•  Step two is recomputed by 

substituting 𝑥𝑏 with xg in Eq. (9).  

• If 𝑛𝑒𝑤𝑥𝑤 dominates the 𝑜𝑙𝑑𝑥𝑤, then 

yk[n] is replaced with newxw and  

• If 𝑜𝑙𝑑𝑥𝑤 dominates 𝑛𝑒𝑤𝑥𝑤, then go to 

iv;  

A novel solution is developed by a 

random process to replace the frog with 

the lowest fitness value. In order to steer 

this process towards an evolutionary 

trajectory, the novel solution is derived 

through the random generation of a new 

frog within the vicinity of the globally 

optimal frog, denoted as xg. 

After the process of memetic evolution, 

the memeplex Yk undergoes an update 

and reorganisation. 

Each memeplex undergoes repeats of 

steps i to v for a predetermined number of 

times. 

The topic of discussion pertains to the 

approach of shuffling and archiving. 

Following a series of memetic 

evolutions, the memeplexes undergo a 

process of consolidation and arrangement, 

wherein they are organised in a 

descending order based on their MOfit 

value. The process of identifying non-

dominated solutions is conducted, and 

subsequently, these solutions are 

incorporated into the archive set. The 

utilisation of the archiving method is 

prevalent in numerous MOO algorithms as 

a means of preserving the collection of 

non-dominated solutions. The utilisation 

of niche methods is a highly successful 

strategy for promoting and maintaining 
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variety among the non-dominated 

solutions inside a given set. The niche-

based archiving method use the niche 

radius as a means to determine the sharing 

fitness of non-dominated solutions. The 

quantification of fitness sharing is 

determined using the following formula: 

 

 

𝐹(𝑖) = 1/ ∑𝑞 𝑠h( 𝑑 ) 𝑗=1 𝑖𝑗  

where:  

1−( 𝑑𝑖𝑗 )𝛼 𝑠h(𝑑𝑖𝑗) = { 𝜎𝑠h𝑎𝑟𝑒  

0  

𝑑𝑖𝑗 < 𝜎𝑠h𝑎𝑟𝑒  

𝑑𝑖𝑗 > 𝜎𝑠h𝑎𝑟𝑒  

(10)  

(11)  

 

The sharing fitness of the ith non-

dominated solution is denoted as F(i). The 

variable q represents the number of 

solutions in the archive set. The sharing 

function between the ith and jth non-

dominated solutions is represented as 

sh(dij), where dij is the Euclidean distance 

in the objective space between the ith and 

jth non-dominated solutions. The constant 

coefficient α and the niche radius σshare 

are also included in the equation. 

The relationship between the niche 

radius and F(i) is evident. An improperly 

determined niche radius can result in a 

non-uniform distribution of the non-

dominated solutions. This study utilises a 

self-adaptive calculation method proposed 

by Chui [21] to determine the niche radius 

(𝜎𝑠h𝑎𝑟𝑒) based on the number and 

distribution of solutions in the archive set. 

The difficulty of specifying the niche 

radius a priori is taken into consideration, 

and therefore, the method automatically 

computes and adjusts it during the 

iteration procedure. The computation 

approach is provided in equations (12) and 

(13). 

𝐶  
𝜎𝑠h𝑎𝑟𝑒 = {∑𝑞 𝑖=1  

𝑖𝑓 𝑞 < 2  

𝑑𝑖⁄𝑞 (12) 𝑖𝑓 𝑞 ≥ 2  

𝑑 = 𝑚𝑖𝑛 ( || 𝐹 (𝑥) − 𝑖𝑖𝑗  

𝐹 (𝑥) || ) for i, j = 1,2,...,q such that j = ̸I 

(13)  

Let q symbolise the quantity of 

solutions within the archive set. The 

variable di represents the minimal 

Euclidean distance in the objective space 

between the ith non-dominated solution 

and the remaining solutions. Additionally, 

C is a positive constant that is often 

assigned a value of 1. The niche radius is 

determined by computing the average 

value of di for all non-dominated solutions 

inside the archive set. 

 

Multi-objective evaluation measures 

used  

This research utilises three quantitative 

metrics of solution set quality: 

Contributions (IC), Hypervolume (IHV), 

and Generational Distance (IGD), which 

were previously employed by Ferrucci et 

al. [9] and Barros and Araujo [10]. The 

values are quantified within the interval [0, 

1]. 

In computational science, the indicator 

of convergence (IC) refers to a 

quantitative metric used to assess the 

degree to which an algorithm, denoted as 

A, generates solutions that reside on the 

reference front RS. The calculation 

involves determining the ratio of solutions 

in RS generated by A [26]. This ratio is 

formally defined as follows: 

Let C represent the Pareto solution set 

that is shared by both A and RS. W 

represents the solution sets in A that 

dominate other solutions in RS, and N 

represents the set of solutions in A that 

have a dominance relation with no 

solution in RS. An optimal Pareto front 

should exhibit a high IC (Indicator 

Contribution) value and make a significant 

contribution to the reference front. 

The Inverted Hypervolume (IHV) is a 

metric used to determine the volume 
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enclosed within the objective space by the 

set of non-dominated solutions generated 

by a specific algorithm. This metric 

combines elements of both convergence 

and diversity. The study utilises the 

Optimal 3D Hypervolume Algorithm as 

reported by Paquete et al. (27). The 

algorithm traverses a front that has been 

sorted based on a single aim, while 

simultaneously keeping track of the entire 

two-dimensional area encompassing the 

points that have been examined thus far.  

The position of each point, denoted as 

p, in the front is determined by querying a 

height-balanced binary tree with the 

remaining objectives. If a variable p is 

determined to be dominated, it is 

subsequently eliminated. In the event that 

a point p exhibits dominance over other 

points, those points are subsequently 

removed from the tree structure. If 

necessary, the two-dimensional area is 

subsequently updated in constant time. 

The vertical distance between point p and 

the subsequent lower point, referred to as 

the slice depth, is thereafter multiplied by 

the area and subsequently incorporated 

into the total volume. The algorithm's 

pseudo-code is depicted in Figure 2. The 

algorithm's performance improves as the 

value of IHV increases. 

The Index of Generational Distance 

(IGD) is a metric used to assess the 

convergence of an algorithm by 

quantifying the average distance between 

the solution set S generated by the 

algorithm and the reference set RS. The 

calculation of the distance between set S 

and set RS in an N-dimensional objective 

space involves determining the average 

Euclidean distance across N dimensions. 

This value is obtained by measuring the 

distance between each point in set S and 

its closest neighbouring point in set RS. 

The term is defined in the following 

manner [28]. 
𝐼𝐺𝐷(𝑆)= 1 ∑ 𝑚𝑖𝑛{𝑑𝑥𝑦 |𝑥 ∈𝑆} (15) |𝑅𝑆| 𝑦 

∈𝑅𝑆  

The𝑑𝑥𝑦 
isthedistancebetweenasolutionxinSandare

ferencesolutionyin RS in the N-

dimensional objective space as defined in 

Eq. (16):  

𝑑 = √(𝑓 (𝑦)−𝑓 (𝑥))2 +⋯+ (𝑓 (𝑦)−𝑓 (𝑥))2 

(16) 𝑥𝑦11 𝑁𝑁  

where 𝑓 (x) is the ith objective function 

values of a solution x. Good fronts possess 

𝑖  

low IGD and thus, are closer to the 

reference front.  

Initialize tree, sort PS in 3rd objective 

and set Volume to 0 Set p = head (PS), ps 

= tail (PS), area = p[0] * p[1], z = p For 

each p in PS 

Search tree for point q to the right of p  

If p is not dominated 

Increase volume by slice between z and p  

z=p 

For each point s in tree dominated by p 

Remove s from tree  

 

RESULTS AND DISCUSSION  

This section presents a comprehensive 

analysis of the design of our empirical 

experimental investigation, encompassing 

the dataset employed, parameter 

configurations, and the outcomes of the 

experiments. 

 

Software project data used  

This study utilises six (6) sets of real-

life software project data that were 

collected by Barros and Araujo [10] and 

have been made publically accessible for 

the purpose of replication and validation in 

research. The dataset has been 

summarised and presented in Table 1. The 

OMET programme is a software tool 

designed for the purpose of effectively 

managing meteorological data. The 

WAMS system is an air traffic routing 

control system that effectively manages 

traffic control communications. The 

Profile and Configuration Settings 

Management (PARM) system is 
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responsible for the storage and 

management of user profiles and their 

associated configuration settings, which 

are utilised by a multitude of applications. 

The Personnel System for Online 

Authentication (PSOA) is a 

comprehensive system designed to 

effectively handle the authentication and 

authorization of users within enterprise 

systems. ACAD is a comprehensive 

academic portal system designed to 

effectively handle the records of university 

students and staff members. The WMET 

system is responsible for the management 

and storage of meteorological data within 

a database. 

 

Parameter setting  

The experimental setting of three major 

factors was conducted in response to the 

non-deterministic characteristics of 

MOSFLA. The parameters were subjected 

to variation in successive iterations, and 

the most optimal values were chosen for 

the real experiment. The shuffling 

iteration, which is responsible for 

determining the stopping criterion, is 

evaluated using the values 500, 1000, 

1500, and 2000. To account for the 

inherent randomness of MOSFLA, the 

optimisation process was performed 30 

times for each value and instance. 

Subsequently, a reference front was 

constructed using the non-dominated 

solutions gathered from all 30 cycles for 

each instance. Next, the Inverted 

Generational Distance (IGD) was 

calculated for the offspring produced in 

each iteration in order to identify the 

optimal and efficient value. 

To determine the optimal beginning 

population size, a comparable 

methodology was employed. A 

comparison was made between the 

population sizes of 2m, 3m, and 4m, where 

'm' represents the number of actions for 

each instance. Table 2 presents the initial 

findings of the conducted experiment on 

the specific case of instance ACAD. In all 

experimental trials, the quantity of 

memeplexes was established at 5. The 

process for the number of iterations of 

memetic evolution within each memeplex 

was consistently applied for each case. 

The value of the memeplex is determined 

by the quantity of frogs, denoted as 'n'. 

Specifically, the value is established as 2n, 

4n, and 8n. The preliminary findings of the 

experiment conducted on instance ACAD 

are presented in Table 3. Based on the first 

findings, it can be deduced that the 

combination of shuffling iteration 1500, 

population size 4m (where m represents 

the number of activities in the given 

instance), and evolution iteration value 4n 

(where n represents the number of frogs in 

each memeplex) yielded the most 

favourable outcomes across all the 

examined combinations. Hence, the three 

primary parameters have been established 

appropriately for the empirical 

investigation. 

 

Experimental results  

The Java implementation of MOSFLA 

was utilised for all project instances, with 

the parameters configured as previously 

stated in the preceding subsection. To 

account for the inherent variability of the 

algorithm, each experiment is repeated 30 

times and the outcomes are subsequently 

averaged. Each instance is evaluated using 

the multi-objective quality indicators 

Contributions (IC), Hypervolume (IHV), 

and Generational Distance (IGD). The 

reference front is constructed by 

aggregating all the fronts generated from 

each individual run. The findings of the 

IC, IHV, and IGD metrics for all 

occurrences under consideration are 

presented in Table 4. 

The results presented in Table 4 

demonstrate the strong performance of the 

proposed memetic algorithm. Specifically, 

the algorithm achieved a high 

hypervolume value of around 0.7, 

indicating its success in exploring the 

solution space. Additionally, the method 
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exhibited a high contribution value of 

approximately 0.4, further highlighting its 

efficacy in improving the quality of 

solutions. Furthermore, the Generational 

distance was found to be quite low, 

suggesting that the system is robust and 

capable of generating solutions that are 

close to the true Pareto front. Overall, 

these findings underscore the 

effectiveness and robustness of the 

suggested memetic algorithm. It can be 

inferred that the algorithm exhibited 

superior performance in the context of 

large-scale projects, as evidenced by its 

ability to generate the highest 

hypervolume and generational distance 

values for instances with a substantial 

number of activities (108 in the case of 

PARM). However, it is worth noting that 

the algorithm achieved its optimal 

outcome in terms of Contribution in a 

medium-scale project with 84 activities 

(OMET). 

Based on the analysis, it can be inferred 

that MOSFLA has the highest level of 

suitability for addressing the overtime 

planning problem seen in large-scale 

software engineering projects. In order to 

conduct a comprehensive assessment of 

the algorithm's efficacy, a comparative 

analysis was conducted, pitting its 

performance against conventional 

overtime management tactics commonly 

employed in the software industry. In this 

study, we evaluate the OPP formulation 

utilising the MOSFLA search method with 

three OMS strategies proposed by Ferruci 

et al. [9], namely "margarine" (MAR), 

Critical Path (CPM), and Second Half 

(SH). The fronts that were generated by 

MOSFLA throughout 30 optimisation 

cycles were compared to the front 

generated by each OMS based on the 

quality metrics. The reference front was 

constructed using the Pareto fronts derived 

from all the optimisation multi-objective 

strategies (OMS) and the multi-objective 

shuffled frog leaping algorithm 

(MOSFLA). The findings of the 

operational management strategies are 

derived from the source referenced as [10]. 

The outcomes of MOSFLA in comparison 

to all other OMS techniques are presented 

in Table 5. 

 

In terms of the Contributions (IC) 

quality indicator, it is evident that 

MOSFLA has superior performance 

compared to all other overtime 

management techniques across all six 

cases, with the exception of the ACAD 

instance where it achieved the lowest 

value of 0.0016. Figure 3 presents a 

comparative analysis of the outcomes 

derived from the Contribution (IC) 

indicator. In terms of the Hypervolume 

(IHV) quality indicator, it is evident that 

MOSFLA outperforms all other overtime 

management methods across all instances, 

with the exception of the ACAD instance. 

In the ACAD instance, SH achieved the 

highest value of 0.3589, while MOSLA 

closely followed with a value of 0.3402. 

The information is clearly depicted in 

Figure 4. 

The potential reason for the suboptimal 

performance of MOSFLA in the ACAD 

instance could be attributed to the 

relatively small scale of the project. It is 

worth noting that the algorithm tends to 

exhibit improved performance when used 

to larger projects, as evidenced by the 

findings presented in Table 4. When 

evaluating Generational Distance (IGD), it 

is evident that MOSFLA consistently 

surpasses all other overtime management 

solutions, demonstrating the lowest values 

across all six project cases. 

Figure 5 illustrates the Generational 

Distances (IGD) associated with both 

MOSFLA and overtime management 

techniques. The MOSFLA algorithm 

consistently yields superior results in 

terms of the Inverted Generational 

Distance (IGD) and Inverted 

Hypervolume (IHV) metrics across all 

instances. The IC MOSFLA demonstrated 
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marginal improvements in comparison to 

the alternative OMS. 

Table 6 presents the average values of 

Contribution (IC), Hypervolume (IHV), 

and Generational Distance (IGD) obtained 

by MOSFLA and other OMS techniques, 

ensuring a proper comparison. 

 
 
 
 
 
 
 
 
 

 

Fig. 3. Contributions of MOSFLA and 

other OMS 

 
 
 
 
 
 
 
 

Fig. 4. Hypervolumes of MOSFLA and 

other OMS 

 
 
 
 
 
 
 
 
 
 

Fig. 5. Generational Distances of 

MOSFLA and other OMS 

The performance of the proposed 

algorithm MOSFLA, as formulated in the 

current study, exhibited superior results 

compared to all other techniques 

employed over time. On average, the 

Contribution (IC) quality indicator 

exhibited the greatest values of 0.0118, 

while the Hypervolume (IHV) quality 

indicator demonstrated the highest value 

of 0.389. Conversely, the Generational 

Distance (IGD) quality indicator had the 

lowest value of 0.0102. On average, each 

run of MOSFLA made a contribution of 

5.8 solutions to the reference front, while 

OMS made an overall contribution of 6.83 

solutions. This finding suggests that the 

proposed approach accounted for 46% of 

all generated solutions, which is only 

slightly lower than the total number of 

solutions produced by the OMS strategies. 

This demonstrates the overall superiority 

of the MOSFLA algorithm compared to 

the currently practised overtime 

management strategies in industries. 

Finally, for the proposed memetic 

strategy to be considered, it is imperative 

that it demonstrates superior performance 

compared to the current state-of-the-art 

technique for the given problem. The 

present solution approaches in Search-

Based Software Engineering (SBSE) for 

addressing the issue of planning software 

projects' overtime primarily utilise NSGA-

II and its variants [9, 10, 14]. In order to 

assess the performance of MOSFLA, we 

compare its results with those obtained by 

Barros and Araujo [10] using NSGA-IIV, 

as our study is built around the same 

dataset. The findings of the comparison 

are presented in Table 7. In terms of 

Contribution (Ic), it is evident that NSGA-

IIv yielded greater values of 0.2636 and 

0.0848 in the ACAD and WMET cases, 

respectively. Nevertheless, when the 

project instances become larger, 

MOSFLA outperforms NSGA-IIv in 

terms of performance value. Specifically, 

MOSFLA exhibits greater values of 

Contribution (Ic) in WAMS, PSOA, 
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OMET, and PARM, with the margin rising 

in direct proportion. 

The data suggests that there is a positive 

correlation between project size and the 

performance of MOSFLA, as the former 

increases, the latter also increases. 

Conversely, NSGA-IIv exhibits a negative 

correlation with project size, as its 

performance drops as projects grow larger. 

The graphical representation of the 

observed change may be seen in Figure 6. 

The aforementioned outcome highlights 

the efficacy of MOSFLA in addressing 

issues of significant magnitude. In all 

project instances, MOSFLA exhibited 

superior performance compared to NSGA-

IIv, as evidenced by its higher 

Hypervolume (IHV) values and lower 

Generational Distance (IGD) values. 

Notably, MOSFLA achieved the greatest 

IHV of 0.4489 in the PARM project 

instance, while also attaining the lowest 

IGD value of 0.0065 in the WMET project 

instance. The graphical representation of 

the Inverted Hypervolume (IHV) of 

MOFLA and NSGA-IIv is depicted in 

Figure 7. 

 

CONCLUSION  

A novel memetic method, utilising the 

Multi-Objective Shuffled Frog Leaping 

method (MOSFLA), has been devised for 

the purpose of multi-objective overtime 

planning in software engineering projects. 

The Overtime Planning Problem is 

expressed as a three-objective 

optimisation problem that encompasses 

the dynamics of error creation and 

propagation resulting from the 

implementation of overtime, utilising 

simulation techniques. A modified version 

of the Multi-Objective Simulated Flight 

Algorithm (MOSFLA), known as 

HyperVolume (IHV) and Contribution 

(IC), has been specifically developed for 

the purpose of addressing the overtime 

planning problem at hand. The method 

utilises a self-adaptive niche-based 

archiving strategy in order to preserve the 

non-dominated solution. The algorithm 

was adapted to MOO by the 

implementation of efficient sorting and 

memetic evolution techniques. The 

algorithm's effectiveness was assessed by 

empirical evaluation using a dataset 

derived from real-life software projects. 

The results indicate that the technique is 

highly effective in the management of 

medium and large-scale software 

development. Notably, it surpassed all 

existing overtime management strategies 

across many quality measures. The 

memetic technique demonstrates superior 

performance compared to the state-of-the-

art approach (NSGA-IIv) across all quality 

indicators. In subsequent research 

endeavours, we want to conduct a 

comprehensive examination of the effect 

magnitude and statistical significance of 

the findings through the utilisation of 

inferential statistical techniques. 

Additionally, our research aims to 

empirically assess the impact of overtime 

on the programme's quality by employing 

software quality prediction tools [29-31]. 

 

Nomenclatures  

Cd Crowding distance 

Co Cost of overtime hours 

Cr Cost of regular hours 

dij Euclidean distance of objective space 

between the ith and  

jth non-dominated solutions F(i) 

Sharing Fitness  

IC Contribution 

IGD Generational Distance 

IHV Hypervolume 

MOFit Multiobjective Fitness Function 

Sh(dij) Sharing function of ith and jth 

non-dominated solutions xb Local best 

frog 

xg Global best frog 

xw Worst frog 

Yk Kth memeplex  
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Greek Symbols  

 Sharing constant-coefficient 𝜎𝑠h𝑎𝑟𝑒 

Niche radius   

 

Abbreviations  

CPM Critical Path Management DAG 

Directed Acyclic Graph DP DePendency 

FP Function Points  

MAR MARgarine Management 

MOO Multi-Objective Optimization 

MOSFLA Multi-Objective Shuffled 

Frog-Leaping Algorithm NSGA-II Non-

dominated Sorting Genetic Algorithm II 

OH Overtime Hours 

OMS Overtime Management Strategies 

OPP Overtime Planning Problem  
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