
GLOBAL ACADEMIC RESEARCH INSTITUTE

COLOMBO, SRI LANKA

International Journal of Engineering Science

ISSN 2424-645X

Volume: 01 | Issue: 01

On 30th June 2019

 http://www.research.lk

Author: Dr. Rasika Aponsu

IIC University of Technology, Cambodia

GARI Publisher | Software Engineering | Volume: 01 | Issue: 01

Article ID: IN/GARI/JOU/2019/84 | Pages: 22-38 (17)

ISSN 2424-645X | Edit: GARI Editorial Team

Received: 22.05.2019 | Published: 30.06.2019

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

A METRIC-BASED APPROACH FOR MULTI-OBJECTIVE OVERTIME

PLANNING IN SOFTWARE ENGINEERING PROJECTS

Dr. Rasika Aponsu

IIC University of Technology,

Cambodia

ABSTRACT

Software projects frequently experience

unexpected overtime as a result of

uncertainties and risks arising from

evolving requirements and the pressure to

meet the software product's time-to-

market. This phenomenon induces stress

among developers and may lead to

substandard quality. The present study

introduces a memetic algorithmic

methodology to address the issue of

overtime planning in software

development projects. The issue is framed

as a trivariate optimisation problem with

the objective of minimising overtime

hours, project makespan, and cost. The

formulation effectively models the process

of mistake production and dissemination

over time through the use of simulation.

The Multi-Objective Shuffled Frog-

Leaping Algorithm (MOSFLA), which

has been specifically developed for the

purpose of overtime planning, is utilised to

address the given problem. The

researchers conducted empirical

evaluation studies on six real-life software

project datasets, employing three

commonly utilised multi-objective quality

indicators. The findings of the study

indicate that MOSFLA exhibited superior

performance compared to conventional

overtime management systems in software

engineering projects across all quality

measures. Specifically, MOSFLA

achieved values of 0.0118, 0.3893, and

0.0102 for Contribution (IC),

Hypervolume (IHV), and Generational

Distance (IGD), respectively. In all project

situations, the proposed approach yielded

superior outcomes in terms of IHV and

IGD compared to the state-of-the-art

approach (NSGA-IIV). Nevertheless, the

proposed methodology exhibited superior

performance compared to NSGA-IIV in

around 67% of project instances in terms

of IC.

Keywords: Human Resource

Management, Software Engineering

Projects, Metric-Based Approaches

INTRODUCTION

The field of Software Engineering

focuses on addressing optimisation

challenges in the development of software,

aiming to enhance its speed, cost-

effectiveness, reliability, scalability,

responsiveness, maintainability, and

testability [1]. Therefore, the successful

completion of software engineering

projects within the designated timeframe

and budgetary constraints is contingent

upon the implementation of effective

software project management

methodologies [2]. Software Project

Management (SPM) encompasses a range

of essential tasks, including cost

estimation, project planning (including

project scheduling and personnel), and

quality management. These activities play

a crucial role in determining the success of

a software project [1]. These tasks

frequently require the identification of a

suitable equilibrium between objectives

that are typically in competition and

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

conflict with one another. The SPM, or

Software Project Management, is often

conceptualised as a challenge including

project scheduling and staffing [3]. This

problem is typically addressed through the

utilisation of the Search-Based Software

Engineering (SBSE) technique. In the

field of Search-Based Software

Engineering (SBSE), a software

engineering challenge is conceptualised as

a search problem with the objective of

identifying the most suitable solution that

satisfies specific adequacy requirements.

The objective is to reframe challenges in

software engineering as optimisation

problems based on search methods, and

thereafter employ a range of meta-

heuristic techniques to address these

problems.

Software Project Scheduling (SPS) is an

optimisation issue that aims to identify an

optimal timetable for a software project.

The objective is to ensure that both

precedence and resource limitations are

met, while minimising the overall project

cost, which includes human salary and

project duration [4]. The problem of SPS

has been addressed by the utilisation of

meta-heuristic optimisation techniques [3,

5-8]. Meta-heuristic algorithms are

employed to explore a vast input space in

pursuit of an optimal solution, with the

guidance of a fitness function. The fitness

function serves as a means to articulate the

objectives and guide the investigation into

potentially optimal regions within the

search space. The algorithms employed in

this context serve the purpose of

automating and providing

recommendations for software engineers,

aiding them in making informed decisions

during the planning phase of a software

project. Nevertheless, it may not always be

feasible to expect automated technologies

to generate the initial project design.

According to Ferrucci et al. (2019), their

study findings indicated that practitioners

expressed a preference for relying on their

own judgements when creating the initial

project plan. This preference stemmed

from the fact that the allocation of staff to

different work packages involves

numerous decisions that are specific to the

human and domain context. Consequently,

an automated approach is deemed

insufficiently equipped to effectively

handle these decision-making processes.

However, it is common for engineers to

face the challenge of unguided initial

project plans, which frequently result in

developers having to work extra, often

without prior planning, in order to fulfil

project deadlines. There are multiple

causes that can contribute to the necessity

of working overtime. Several reasons

contribute to the challenges faced in

project management, including but not

limited to: evolving and time-sensitive

needs, shortened timelines, complexities

in measuring project progress, and the

imperative to align with the market's

demand for timely delivery of new

features. Nevertheless, the primary

reasons that have been documented as

contributing to unplanned overtime are a

delayed alteration in requirements and a

shortened time frame for product release

[1, 10].

As anticipated, research has

demonstrated that the allocation of

excessive and unscheduled overtime has

negative consequences on the well-being

of developers and the quality of the

software they generate. Nishikitani et al.

[11] and Karita et al. [12] have reported an

observation indicating a positive

association between overtime work, long

shifts, and stress indicators, such as

sadness, rage, hostility, as well as an

increase in equilibrium and motor-related

issues among IT workers. In relation to the

impact on software development, Akula

and Cusick [13] discovered that extended

periods of overtime labour have been

shown to result in heightened levels of

stress. Consequently, this heightened

stress has been found to correlate with an

increase in the number of defects observed

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

in software projects. The consequences of

these impacts are indicative of

substandard software, as developers

persistently prioritise expeditious task

completion over quality. The

aforementioned fragments of evidence

derived from scholarly sources emphasise

the necessity of implementing a decision

support methodology that can effectively

manage overtime planning while

considering factors such as staff

productivity, cost, project duration, and

product quality.

In order to address the adverse

consequences of extended overtime in

software development projects, engineers

in the industry employ several strategies

known as Overtime Management

Strategies (OMS). In their study, Ferrucci

et al. (2019) identified and discussed three

prevalent overtime tactics employed by

software engineers in the business. These

strategies include Margarine (MAR)

management, Critical Path Management

(CPM), and Second Half (SH)

management strategies. In the context of

the MAR system, the allocation of

overtime hours is distributed uniformly

among all activities included in the

schedule. In contrast, the Critical Path

Method (CPM) incorporates additional

hours into the schedule's critical path, but

in the Schedule Half (SH) approach,

overtime hours are allocated to the latter

portion of the schedule to compensate for

delays that occurred in the initial phase.

However, there is a limited amount of

research that has been conducted to

effectively address the Overtime Planning

Problem (OPP) using the SBSE approach.

The present methodologies utilise genetic

multi-objective evolutionary algorithms,

specifically NSGA-II and its various

adaptations [9, 10, 14]. As far as current

information indicates, there has been no

prior research conducted on the utilisation

of alternative Multi-Objective

Optimisation algorithms for the purpose of

overtime planning in software projects.

Hence, it is imperative to do further

research on overtime planning procedures

that have the potential to surpass existing

overtime management tactics and state-of-

the-art approaches.

The purpose of this study is to evaluate

the efficacy of the memetic multi-

objective evolutionary algorithm in

addressing the issue of software project

overtime planning. Specifically, the Multi-

purpose Shuffled Frog Leaping Algorithm

(MOSFLA) is employed as the primary

approach for tackling this problem. In the

context of optimisation problems,

memetic algorithms have demonstrated

superior efficiency and effectiveness

compared to traditional evolutionary

algorithms in certain problem domains [2,

15, 16]. Memetic algorithms can be

conceptualised as a combination of a

population-based global technique and a

local search conducted by each individual

within the population. Consequently, there

is a growing recognition of memetic

algorithms, notably in renowned

combinatorial optimisation problems that

have witnessed successful attainment of

optimal solutions for huge instances,

whereas alternative meta-heuristics have

proven inadequate in achieving equivalent

outcomes.

The subsequent section of this paper is

structured in the following manner:

Section 2 provides an overview of relevant

literature pertaining to the scheduling of

software projects over extended periods of

time. Section 3 of the study was dedicated

to the elucidation of the optimisation

problem formulation. Section 4 of this

study is dedicated to the proposed

framework, which outlines the

computational search technique utilised

for addressing the optimisation problem

(OPP). Additionally, this section discusses

the evaluation metrics employed to assess

the performance of the approach. Section

5 of the manuscript outlines the

experimental configuration and provides

an in-depth analysis of the obtained

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

results. The subsequent section, Section 6,

serves as the concluding segment of the

study.

RELATED WORKS

The impact of overtime on software

quality was investigated by Akula and

Cusick [13] through a statistical survey

conducted on four real-life software

projects. The recorded data for each

project included the number of scheduled

work hours, the actual overtime hours, and

the number of flaws. The results of the

statistical study indicated a positive

correlation between the number of defects

and the amount of extra hours in all of the

projects that were examined. The study

revealed a positive correlation between the

number of defects and the extent of

overtime, indicating that as extra hours

grow, the defect count also tends to rise.

Additionally, it was noted that prolonged

overtime leads to increased stress levels

among workers, which in turn negatively

impacts the project's development.

Despite the existing literature on the

subject, there is a noticeable scarcity of

research studies pertaining to the use of

search-based meta-heuristic algorithms in

the context of software project overtime

planning. This investigation identified a

limited number of three scholarly papers

that have employed Search-Based

Software Engineering (SBSE) to address

the challenge at hand. The search-based

optimisation approach to software

overtime planning was introduced by

Ferrucci et al. (9). The research paper

introduced the conceptualization of

software project overtime planning as a

multi-objective optimisation problem. The

aim of this study is to examine the impact

of several overtime allocation choices on

the project schedule. Each choice is

designed to minimise project duration,

overtime hours, and the risk of exceeding

the project's allocated resources. This will

be achieved by utilising three risk

assessment models.

The computational search approach

adopted in this study was NSGA-IIv, a

variation of NSGA-II that incorporates a

crossover operator specifically tailored for

the overtime planning problem. In order to

evaluate the efficacy of the

aforementioned approach, the researchers

conducted an empirical investigation

including six authentic software projects.

The experimental findings indicate that

the proposed technique exhibits a

statistically significant improvement

compared to the conventional NSGA-II

method in 76% of the conducted trials.

Furthermore, the proposed methodology

demonstrates superior performance when

compared to the industry's prevailing

overtime planning tactics. Nonetheless,

the formulation employed by the authors

neglected to consider the adverse impact

of overtime on the quality of software,

despite the existence of actual studies in

the literature (references 11 and 13) that

have demonstrated that the effort

expended in rectifying the additional

errors introduced by developers working

overtime surpasses the gains in

productivity.

In a recent study, Sarro et al. (2014)

expanded upon the research conducted by

Ferrucci et al. (2009) by introducing an

adaptive approach for selecting meta-

heuristic operators. The objective of this

approach was to enhance the performance

of algorithms within the context of the

same problem formulation. The research

introduced a novel iteration of NSGA-II,

referred to as Adaptivevsc, that integrates

the crossover operator proposed by

Ferrucci et al. [9] with the adaptive genetic

operators of NSGA-IIa, as proposed by

Nebro et al. [17]. Furthermore, the

research presented a novel approach for

dynamically selecting genetic operators

during the search process. The findings

derived from empirical investigations

conducted on eight authentic software

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

projects demonstrated that the suggested

adaptive methodology exhibited superior

performance compared to state-of-the-art

methodologies in 93% of the trials.

Furthermore, it was observed that the

proposed technique consistently beat

existing overtime planning strategies in all

of the experiments, indicating a

statistically significant improvement.

The approach presented by Ferrucci et

al. [9] was further developed by Barros

and Araujo [10] to incorporate the impact

of overtime work on software quality. The

research presented a novel approach to the

OPP by incorporating simulation

techniques to assess the impact of an

augmented quantity of defects resulting

from overtime on the project's length and

expense. The primary aim of their research

is to employ optimisation and simulation

techniques in order to investigate the

impact of various overtime planning rules

on both the length and expense of the

project. The computational search

approach employed in this study was

NSGA-II, which was utilised to optimise

the planning process over time. The

primary objective of this optimisation was

to minimise the overall project length,

project makespan, and cost. The

methodology was contrasted with

overtime tactics commonly employed in

the industrial sector, as well as a

comparable model that does not exhibit

the detrimental impacts of overtime on

product quality. The experimental

findings demonstrated that NSGA-II

exhibited superior performance compared

to both the margarine and critical path

overtime techniques. Nevertheless, the

implementation of the Second-Half

overtime management method yielded

favourable outcomes when applied to

NSGA-II within the specified framework.

This discovery necessitates the

development of a more effective search

methodology that has the potential to

surpass all existing techniques in terms of

performance within the same framework.

This study closely aligns with the

research conducted by Barros and Araujo

[10] in terms of problem formulation.

However, it diverges in terms of the

computational search strategy employed,

utilising a memetic algorithm known as

MOSFLA.

Problem Formulation

The present work utilises a decision

problem model proposed by Barros and

Araujo [10] to address the issue of

overtime planning. This model

incorporates the complexities associated

with error production and propagation

resulting from overtime, employing

simulation techniques. This methodology

calculates the potential influence of

escalated defect counts resulting from

overtime on the overall length and expense

of the project.

Consider a project schedule that may be

described as a Directed Acyclic Graph

(DAG). This DAG consists of a set of

nodes, denoted as WP = {wp1, wp2, ...,

wpn}, which represent the Work Packages

involved in the project. Additionally, there

is a set of edges, denoted as DP = {(wpi,

wpj): 1 ≤ i ≤ n, 1 ≤ j ≤ n}, which represents

the dependencies among the Work

Packages.Every work package (WP) is

distinguished by the level of effort needed

to finish it, which is quantified in terms of

function points (FP). Each dependency in

the Dependency Structure Matrix (DSM)

signifies that the initiation of the

development of a certain work package

(wpj) is contingent upon the conclusion of

the analysis phase of another work

package (wpi).

Based on the empirical estimation of

average productivity of 27.8

FP/developer-month for Information

Systems (IS) projects [18], the expected

length of a work package may be

determined by considering the size of the

work package in FP.

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

The equation (1) represents the duration

(D) of an event, which is a function of the

effort (wpi) divided by a constant value of

27.8.

The project's minimum duration is

determined by the Critical Path, which

refers to the longest path in terms of

duration. The utilisation of the critical

route methodology has been a

longstanding practise in the construction

of software project schedules for several

decades. Nevertheless, the primary

concern lies in the analysis of the impacts

of overtime assignments on the schedule,

with the objective of minimising project

makespan, expense, and the use of

overtime. In the context of error

propagation within software development

projects, Jones (18) discovered that

developers, on average, introduced four

errors per functional point (FP) during the

analysis, design, and coding phases of a

component. This phenomenon has an

impact on the length of testing procedures.

In regards to mistake production resulting

from overtime, Abdel-Hamid and

Madnick [19] established a model to

examine the correlation between the extent

of overtime invested by developers and the

quantity of faults introduced into the

software they generate. According to this

model, developers who work 10 hours per

day are estimated to introduce 20% more

errors compared to those who work

regular shifts of 8 hours per day.

Additionally, developers working 12

hours per day are estimated to introduce

50% more errors. The complex link

between overtime and error generation

rates, along with the dynamics of error

transmission, gives rise to a compound

model that necessitates the use of an

optimisation technique driven by

simulation. Hence, this research integrates

optimisation and simulation techniques to

effectively address the issue of software

overtime planning optimisation.

Optimization Objectives

The OPP formulation in this study tries

to minimize:

(3)

• Amount of Overtime Hours (OH) =

∑𝑛 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 (𝑤𝑝) (2)

𝑖=1

• Project Make Span (PMS) = ∑𝑤𝑝∈𝐶𝑃

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑤𝑝𝑖)

𝑖

• Project Cost (PC) = ∑𝑛 𝐶 (𝑤𝑝) + 𝐶

(𝑤𝑝) (4) 𝑖=1𝑟 𝑖 𝑜 𝑖

Subject to the constraints:

0 ≤ 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖) ≤

max𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑤𝑝𝑖), 1 ≤ i ≤ n

DPviolation< 1.

The variable "Overtime Hours (OH)"

represents the cumulative number of hours

spent on activities beyond the regular

working hours, as determined by the

computational search technique. The

Project Makespan (PMS) is determined as

the longest path in the graph that adheres

to precedence constraints. It is computed

by summing the durations of the activities

along this path. The Critical Path (CP)

refers to the sequence of activities in a

project that determines the overall

duration of the project. The duration of

each activity is denoted as wp_i. The

computation of the time of an activity is

derived from the simulation, since it

incorporates the integration of error

production and propagation dynamics into

the schedule of the project. The Project

Cost (PC) is determined by aggregating

the costs associated with each activity.

These costs are contingent upon the

number of regular and overtime hours

expended by the developer in order to

achieve the anticipated results. The cost

law proposed by Barros and Araujo [10] in

Brazil is employed for the purpose of

representing the cost associated with a

particular activity. It may be inferred that

in the given scenario, the cost of a regular

working hour is denoted as C.

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

Furthermore, each of the initial two

overtime hours incurs a cost of 120% of C,

while each subsequent two hours of

overtime incur a cost of 150% of C. The

variable C_r in objective (iii) represents

the cost of regular working hours, while

C_o represents the cost of overtime hours.

The possible solution for the Overtime

Project Problem (OPP) is represented as a

collection of integer values that indicate

the amount of additional hours to be

allocated per day for each individual Work

Package (WP) in the project schedule. The

representation consists of a linear array of

numbers, where each integer corresponds

to the number of overtime hours allocated

for a specific activity indexed in the array.

It is vital to acknowledge that the duration

of standard working hours and the

maximum allowable extra hours are

contingent upon the specific country's

regulations and policies. The study

conducted by Barros and Araujo [10]

establishes a standard working schedule of

8 hours each day, with a maximum

allowance of 4 hours for overtime.

PROPOSED FRAMEWORK

This part outlines the computational

search technique utilised for solving the

overtime planning problem as described in

part 3. Additionally, it introduces the

evaluation metrics that will be employed

to assess the effectiveness of the suggested

computational approach.

Computational Search Approach

In this study, we utilize a computational

search method known as the Multi-

Objective Shuffled Frog-Leaping

Algorithm (MOSFLA). This algorithm is

built on the framework of the original

SFLA algorithm published by Eusuff and

Lansey [20]. Additionally, we incorporate

an archiving strategy that is based on the

adaptive niche methodology proposed by

Cui [21]. The niche strategy is employed

as a means of preserving the non-

dominated solutions. The algorithm

enhances the population sorting technique

and memetic evolution process in order to

accommodate Multi-Objective

Optimisation (MOO).

As a result of the parallel evolution

method employed by the algorithm, the

solutions undergo evolutionary changes in

divergent directions. This characteristic

renders MOSFLA particularly suitable for

addressing MOO challenges, such as the

one under investigation in this paper. The

MOSFLA method is depicted in Figure 1,

as modified by Yinghai et al. [22]. The use

of MOSFLA has demonstrated good

outcomes across several domains,

including typical optimisation test

problem cases [23], the reservoir flood

management problem [22], and the robot

path planning problem [24].

Fig. 1. Flowchart of MOSFLA [22].

MOSFLA Design for Overtime

Planning Problem

In order to address the overtime

planning problem, the method for adapting

the MOSFLA is formulated as follows:

• Population creation and sorting

strategy

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

Due to the stochastic nature of

MOSFLA, the population of viable

solutions, referred to as "frogs," is

generated in a random manner. The

determination of whether a solution is

accepted or rejected is contingent upon its

ability to satisfy the maximum overtime

limits. In the SFLA (Shuffled Frog

Leaping Algorithm), frogs are arranged in

a descending order based on their

performance values, which are determined

by a fitness function. In the context of

single-objective problems, it is customary

to establish the performance value by

directly assigning it as the value of the

objective function. The application of this

approach is not feasible for multi-

objective problems. Numerous

methodologies have been employed in

scholarly works to assess the performance

value in the context of multi-objective

problems.

Several methodologies have been

employed in this study, including the

utilisation of the Pareto dominance

relation to evaluate the solutions.

Additionally, the crowding distance of

individual solutions has been considered.

Furthermore, a combination of the

crowding distance inside the non-

dominated solutions and the hamming

distance between dominated and non-

dominated solutions in the population has

been investigated [22, 23, 25]. The present

study utilises a novel hybrid multi-

objective fitness function that incorporates

both the crowding distance of individual

frogs and the rank gained from sorting

Pareto fronts. This fitness function is

applied to evaluate the fitness of each

solution within the population.

To be more precise, the rank is

determined through the implementation of

the subsequent procedure:

In the first step, the non-dominated

solutions present in the initial population

are assigned to the first rank, also known

as rank 0, and subsequently eliminated.

In the second step, the subsequent non-

dominated solutions are identified from

the remaining solutions and incorporated

into the subsequent rank, which is

designated as rank 1. These solutions are

also removed in accordance with the

appropriate measures.

The aforementioned technique is

iterated until the population no longer

contains any additional solutions.

Following the completion of the

ranking process, the computation of the

crowding distance (Cd) is conducted for

all solutions within the same rank.

Assuming that the multi-objective

optimisation (MOO) entails a set of

predefined goals, the crowding distance of

each frog is computed as follows:

𝐶 =∑𝑟 |𝑃[𝑖+1]·𝑓 −𝑃[𝑖−1]·𝑓| (5) 𝑑 𝑘=1 𝑘 𝑘

𝐶𝑑 is the crowding distance of the ith

frog in the rank set, P[i+ 1] fk and P[i- 1]

fk are kth objective function values of two

adjacent frogs.

The total multi-objective fitness

function presented by Alejandro et al. (24)

is computed using the following formula.

The term is characterised as:

𝑀𝑂𝐹𝑖𝑡 = 1 (6) 2𝑟𝑎𝑛𝑘 + 1

1+ 𝐶𝑑

Memplex formation

The sorted frogs are stored in an array X

= {P(i), i = 1, . . . ,n}. X is then partitioned

into m memeplexes, i.e., Y1,Y2, . . . ,Ym,

each containing n frogs, such that:

𝑌𝑘 = [𝑃(𝑖)𝑘|𝑃(𝑖)𝑘 = 𝑃[𝑘 + 𝑚(𝑖 − 1)]], 𝑖 =

1,..𝑛 𝑘 = 1,..𝑚 (7)

In this way, for m = 4, frog in position 1

goes to memeplex 1, position 2 to

memeplex 2, position 3 to memeplex 3,

position 4 to memeplex 4. Then frog in

position 5 goes to memeplex 1, and so on.

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

Memetic evolution in memeplex

Within every memeplex, there exists a

process of memetic evolution wherein

virtual frogs undergo improvement

through the transfer and sharing of memes,

with the aim of enhancing the performance

of the least successful frog. In the initial

implementation of the Structured Fitness

Landscape Algorithm (SFLA), the

evolutionary process involves enhancing

the fitness of the least optimal frog inside

each memeplex.

𝑑=𝑟𝑎𝑛𝑑∗(𝑥𝑏 −𝑥𝑤), 𝑛𝑒𝑤𝑥𝑤=𝑜𝑙𝑑𝑥𝑤 +𝑑 (8)

where 𝑥𝑏 = local best frog in the

memeplex and xw = worst frog in the

memeplex.

The current evolutionary progression

exhibits inefficiency due to its restriction

of the new frog's habitat to the region

bounded by xw and 𝑥𝑏. This measure

solely reinforces an enhancement in the

local bound. To expand the evolutionary

scope of newxw beyond its local confines,

the researchers Yinghai et al. [22] have

suggested implementing the following

evolutionary step.

𝑑=2∗𝑟𝑎𝑛𝑑∗(𝑥𝑏 −𝑥𝑤), 𝑛𝑒𝑤𝑥𝑤 =𝑜𝑙𝑑𝑥𝑤+𝑑

(9)

This step increases the evolutionary

space by a factor of two, allowing the

position of newxw to reach a value of

2(xb−𝑥𝑤). Fundamentally, the process of

evolution has the capability to generate

solutions that surpass the existing optimal

solution within every memplex.

To achieve local evolution, the first frog

(𝑦𝑘[1]) in the kth memeplex is designated

as the local best frog (𝑥𝑏), whereas the last

frog (𝑦𝑘[n]) is designated as the worst frog

(𝑥𝑤). In order for frogs to undergo

evolutionary progress towards Pareto

optimality, the global best frog (xg) is

designated as a solution that is randomly

selected from the current archive set.

Additionally, the location of the least

optimal frog is modified using Equation

(9). The calculation of objective function

values is performed, followed by a

comparison of the Pareto dominance

connection between newxw and oldxw.

• If 𝑛𝑒𝑤𝑥𝑤 dominates 𝑜𝑙𝑑𝑥𝑤, then yk[n]

is replaced with newxw.

• If 𝑜𝑙𝑑𝑥𝑤 dominates 𝑛𝑒𝑤𝑥𝑤, then go to

iii;

• Step two is recomputed by

substituting 𝑥𝑏 with xg in Eq. (9).

• If 𝑛𝑒𝑤𝑥𝑤 dominates the 𝑜𝑙𝑑𝑥𝑤, then

yk[n] is replaced with newxw and

• If 𝑜𝑙𝑑𝑥𝑤 dominates 𝑛𝑒𝑤𝑥𝑤, then go to

iv;

A novel solution is developed by a

random process to replace the frog with

the lowest fitness value. In order to steer

this process towards an evolutionary

trajectory, the novel solution is derived

through the random generation of a new

frog within the vicinity of the globally

optimal frog, denoted as xg.

After the process of memetic evolution,

the memeplex Yk undergoes an update

and reorganisation.

Each memeplex undergoes repeats of

steps i to v for a predetermined number of

times.

The topic of discussion pertains to the

approach of shuffling and archiving.

Following a series of memetic

evolutions, the memeplexes undergo a

process of consolidation and arrangement,

wherein they are organised in a

descending order based on their MOfit

value. The process of identifying non-

dominated solutions is conducted, and

subsequently, these solutions are

incorporated into the archive set. The

utilisation of the archiving method is

prevalent in numerous MOO algorithms as

a means of preserving the collection of

non-dominated solutions. The utilisation

of niche methods is a highly successful

strategy for promoting and maintaining

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

variety among the non-dominated

solutions inside a given set. The niche-

based archiving method use the niche

radius as a means to determine the sharing

fitness of non-dominated solutions. The

quantification of fitness sharing is

determined using the following formula:

𝐹(𝑖) = 1/ ∑𝑞 𝑠h(𝑑) 𝑗=1 𝑖𝑗

where:

1−(𝑑𝑖𝑗)𝛼 𝑠h(𝑑𝑖𝑗) = { 𝜎𝑠h𝑎𝑟𝑒

0

𝑑𝑖𝑗 < 𝜎𝑠h𝑎𝑟𝑒

𝑑𝑖𝑗 > 𝜎𝑠h𝑎𝑟𝑒

(10)

(11)

The sharing fitness of the ith non-

dominated solution is denoted as F(i). The

variable q represents the number of

solutions in the archive set. The sharing

function between the ith and jth non-

dominated solutions is represented as

sh(dij), where dij is the Euclidean distance

in the objective space between the ith and

jth non-dominated solutions. The constant

coefficient α and the niche radius σshare

are also included in the equation.

The relationship between the niche

radius and F(i) is evident. An improperly

determined niche radius can result in a

non-uniform distribution of the non-

dominated solutions. This study utilises a

self-adaptive calculation method proposed

by Chui [21] to determine the niche radius

(𝜎𝑠h𝑎𝑟𝑒) based on the number and

distribution of solutions in the archive set.

The difficulty of specifying the niche

radius a priori is taken into consideration,

and therefore, the method automatically

computes and adjusts it during the

iteration procedure. The computation

approach is provided in equations (12) and

(13).

𝐶
𝜎𝑠h𝑎𝑟𝑒 = {∑𝑞 𝑖=1

𝑖𝑓 𝑞 < 2

𝑑𝑖⁄𝑞 (12) 𝑖𝑓 𝑞 ≥ 2

𝑑 = 𝑚𝑖𝑛 (|| 𝐹 (𝑥) − 𝑖𝑖𝑗

𝐹 (𝑥) ||) for i, j = 1,2,...,q such that j = ̸I

(13)

Let q symbolise the quantity of

solutions within the archive set. The

variable di represents the minimal

Euclidean distance in the objective space

between the ith non-dominated solution

and the remaining solutions. Additionally,

C is a positive constant that is often

assigned a value of 1. The niche radius is

determined by computing the average

value of di for all non-dominated solutions

inside the archive set.

Multi-objective evaluation measures

used

This research utilises three quantitative

metrics of solution set quality:

Contributions (IC), Hypervolume (IHV),

and Generational Distance (IGD), which

were previously employed by Ferrucci et

al. [9] and Barros and Araujo [10]. The

values are quantified within the interval [0,

1].

In computational science, the indicator

of convergence (IC) refers to a

quantitative metric used to assess the

degree to which an algorithm, denoted as

A, generates solutions that reside on the

reference front RS. The calculation

involves determining the ratio of solutions

in RS generated by A [26]. This ratio is

formally defined as follows:

Let C represent the Pareto solution set

that is shared by both A and RS. W

represents the solution sets in A that

dominate other solutions in RS, and N

represents the set of solutions in A that

have a dominance relation with no

solution in RS. An optimal Pareto front

should exhibit a high IC (Indicator

Contribution) value and make a significant

contribution to the reference front.

The Inverted Hypervolume (IHV) is a

metric used to determine the volume

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

enclosed within the objective space by the

set of non-dominated solutions generated

by a specific algorithm. This metric

combines elements of both convergence

and diversity. The study utilises the

Optimal 3D Hypervolume Algorithm as

reported by Paquete et al. (27). The

algorithm traverses a front that has been

sorted based on a single aim, while

simultaneously keeping track of the entire

two-dimensional area encompassing the

points that have been examined thus far.

The position of each point, denoted as

p, in the front is determined by querying a

height-balanced binary tree with the

remaining objectives. If a variable p is

determined to be dominated, it is

subsequently eliminated. In the event that

a point p exhibits dominance over other

points, those points are subsequently

removed from the tree structure. If

necessary, the two-dimensional area is

subsequently updated in constant time.

The vertical distance between point p and

the subsequent lower point, referred to as

the slice depth, is thereafter multiplied by

the area and subsequently incorporated

into the total volume. The algorithm's

pseudo-code is depicted in Figure 2. The

algorithm's performance improves as the

value of IHV increases.

The Index of Generational Distance

(IGD) is a metric used to assess the

convergence of an algorithm by

quantifying the average distance between

the solution set S generated by the

algorithm and the reference set RS. The

calculation of the distance between set S

and set RS in an N-dimensional objective

space involves determining the average

Euclidean distance across N dimensions.

This value is obtained by measuring the

distance between each point in set S and

its closest neighbouring point in set RS.

The term is defined in the following

manner [28].
𝐼𝐺𝐷(𝑆)= 1 ∑ 𝑚𝑖𝑛{𝑑𝑥𝑦 |𝑥 ∈𝑆} (15) |𝑅𝑆| 𝑦

∈𝑅𝑆

The𝑑𝑥𝑦
isthedistancebetweenasolutionxinSandare

ferencesolutionyin RS in the N-

dimensional objective space as defined in

Eq. (16):

𝑑 = √(𝑓 (𝑦)−𝑓 (𝑥))2 +⋯+ (𝑓 (𝑦)−𝑓 (𝑥))2

(16) 𝑥𝑦11 𝑁𝑁

where 𝑓 (x) is the ith objective function

values of a solution x. Good fronts possess

𝑖

low IGD and thus, are closer to the

reference front.

Initialize tree, sort PS in 3rd objective

and set Volume to 0 Set p = head (PS), ps

= tail (PS), area = p[0] * p[1], z = p For

each p in PS

Search tree for point q to the right of p

If p is not dominated

Increase volume by slice between z and p

z=p

For each point s in tree dominated by p

Remove s from tree

RESULTS AND DISCUSSION

This section presents a comprehensive

analysis of the design of our empirical

experimental investigation, encompassing

the dataset employed, parameter

configurations, and the outcomes of the

experiments.

Software project data used

This study utilises six (6) sets of real-

life software project data that were

collected by Barros and Araujo [10] and

have been made publically accessible for

the purpose of replication and validation in

research. The dataset has been

summarised and presented in Table 1. The

OMET programme is a software tool

designed for the purpose of effectively

managing meteorological data. The

WAMS system is an air traffic routing

control system that effectively manages

traffic control communications. The

Profile and Configuration Settings

Management (PARM) system is

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

responsible for the storage and

management of user profiles and their

associated configuration settings, which

are utilised by a multitude of applications.

The Personnel System for Online

Authentication (PSOA) is a

comprehensive system designed to

effectively handle the authentication and

authorization of users within enterprise

systems. ACAD is a comprehensive

academic portal system designed to

effectively handle the records of university

students and staff members. The WMET

system is responsible for the management

and storage of meteorological data within

a database.

Parameter setting

The experimental setting of three major

factors was conducted in response to the

non-deterministic characteristics of

MOSFLA. The parameters were subjected

to variation in successive iterations, and

the most optimal values were chosen for

the real experiment. The shuffling

iteration, which is responsible for

determining the stopping criterion, is

evaluated using the values 500, 1000,

1500, and 2000. To account for the

inherent randomness of MOSFLA, the

optimisation process was performed 30

times for each value and instance.

Subsequently, a reference front was

constructed using the non-dominated

solutions gathered from all 30 cycles for

each instance. Next, the Inverted

Generational Distance (IGD) was

calculated for the offspring produced in

each iteration in order to identify the

optimal and efficient value.

To determine the optimal beginning

population size, a comparable

methodology was employed. A

comparison was made between the

population sizes of 2m, 3m, and 4m, where

'm' represents the number of actions for

each instance. Table 2 presents the initial

findings of the conducted experiment on

the specific case of instance ACAD. In all

experimental trials, the quantity of

memeplexes was established at 5. The

process for the number of iterations of

memetic evolution within each memeplex

was consistently applied for each case.

The value of the memeplex is determined

by the quantity of frogs, denoted as 'n'.

Specifically, the value is established as 2n,

4n, and 8n. The preliminary findings of the

experiment conducted on instance ACAD

are presented in Table 3. Based on the first

findings, it can be deduced that the

combination of shuffling iteration 1500,

population size 4m (where m represents

the number of activities in the given

instance), and evolution iteration value 4n

(where n represents the number of frogs in

each memeplex) yielded the most

favourable outcomes across all the

examined combinations. Hence, the three

primary parameters have been established

appropriately for the empirical

investigation.

Experimental results

The Java implementation of MOSFLA

was utilised for all project instances, with

the parameters configured as previously

stated in the preceding subsection. To

account for the inherent variability of the

algorithm, each experiment is repeated 30

times and the outcomes are subsequently

averaged. Each instance is evaluated using

the multi-objective quality indicators

Contributions (IC), Hypervolume (IHV),

and Generational Distance (IGD). The

reference front is constructed by

aggregating all the fronts generated from

each individual run. The findings of the

IC, IHV, and IGD metrics for all

occurrences under consideration are

presented in Table 4.

The results presented in Table 4

demonstrate the strong performance of the

proposed memetic algorithm. Specifically,

the algorithm achieved a high

hypervolume value of around 0.7,

indicating its success in exploring the

solution space. Additionally, the method

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

exhibited a high contribution value of

approximately 0.4, further highlighting its

efficacy in improving the quality of

solutions. Furthermore, the Generational

distance was found to be quite low,

suggesting that the system is robust and

capable of generating solutions that are

close to the true Pareto front. Overall,

these findings underscore the

effectiveness and robustness of the

suggested memetic algorithm. It can be

inferred that the algorithm exhibited

superior performance in the context of

large-scale projects, as evidenced by its

ability to generate the highest

hypervolume and generational distance

values for instances with a substantial

number of activities (108 in the case of

PARM). However, it is worth noting that

the algorithm achieved its optimal

outcome in terms of Contribution in a

medium-scale project with 84 activities

(OMET).

Based on the analysis, it can be inferred

that MOSFLA has the highest level of

suitability for addressing the overtime

planning problem seen in large-scale

software engineering projects. In order to

conduct a comprehensive assessment of

the algorithm's efficacy, a comparative

analysis was conducted, pitting its

performance against conventional

overtime management tactics commonly

employed in the software industry. In this

study, we evaluate the OPP formulation

utilising the MOSFLA search method with

three OMS strategies proposed by Ferruci

et al. [9], namely "margarine" (MAR),

Critical Path (CPM), and Second Half

(SH). The fronts that were generated by

MOSFLA throughout 30 optimisation

cycles were compared to the front

generated by each OMS based on the

quality metrics. The reference front was

constructed using the Pareto fronts derived

from all the optimisation multi-objective

strategies (OMS) and the multi-objective

shuffled frog leaping algorithm

(MOSFLA). The findings of the

operational management strategies are

derived from the source referenced as [10].

The outcomes of MOSFLA in comparison

to all other OMS techniques are presented

in Table 5.

In terms of the Contributions (IC)

quality indicator, it is evident that

MOSFLA has superior performance

compared to all other overtime

management techniques across all six

cases, with the exception of the ACAD

instance where it achieved the lowest

value of 0.0016. Figure 3 presents a

comparative analysis of the outcomes

derived from the Contribution (IC)

indicator. In terms of the Hypervolume

(IHV) quality indicator, it is evident that

MOSFLA outperforms all other overtime

management methods across all instances,

with the exception of the ACAD instance.

In the ACAD instance, SH achieved the

highest value of 0.3589, while MOSLA

closely followed with a value of 0.3402.

The information is clearly depicted in

Figure 4.

The potential reason for the suboptimal

performance of MOSFLA in the ACAD

instance could be attributed to the

relatively small scale of the project. It is

worth noting that the algorithm tends to

exhibit improved performance when used

to larger projects, as evidenced by the

findings presented in Table 4. When

evaluating Generational Distance (IGD), it

is evident that MOSFLA consistently

surpasses all other overtime management

solutions, demonstrating the lowest values

across all six project cases.

Figure 5 illustrates the Generational

Distances (IGD) associated with both

MOSFLA and overtime management

techniques. The MOSFLA algorithm

consistently yields superior results in

terms of the Inverted Generational

Distance (IGD) and Inverted

Hypervolume (IHV) metrics across all

instances. The IC MOSFLA demonstrated

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

marginal improvements in comparison to

the alternative OMS.

Table 6 presents the average values of

Contribution (IC), Hypervolume (IHV),

and Generational Distance (IGD) obtained

by MOSFLA and other OMS techniques,

ensuring a proper comparison.

Fig. 3. Contributions of MOSFLA and

other OMS

Fig. 4. Hypervolumes of MOSFLA and

other OMS

Fig. 5. Generational Distances of

MOSFLA and other OMS

The performance of the proposed

algorithm MOSFLA, as formulated in the

current study, exhibited superior results

compared to all other techniques

employed over time. On average, the

Contribution (IC) quality indicator

exhibited the greatest values of 0.0118,

while the Hypervolume (IHV) quality

indicator demonstrated the highest value

of 0.389. Conversely, the Generational

Distance (IGD) quality indicator had the

lowest value of 0.0102. On average, each

run of MOSFLA made a contribution of

5.8 solutions to the reference front, while

OMS made an overall contribution of 6.83

solutions. This finding suggests that the

proposed approach accounted for 46% of

all generated solutions, which is only

slightly lower than the total number of

solutions produced by the OMS strategies.

This demonstrates the overall superiority

of the MOSFLA algorithm compared to

the currently practised overtime

management strategies in industries.

Finally, for the proposed memetic

strategy to be considered, it is imperative

that it demonstrates superior performance

compared to the current state-of-the-art

technique for the given problem. The

present solution approaches in Search-

Based Software Engineering (SBSE) for

addressing the issue of planning software

projects' overtime primarily utilise NSGA-

II and its variants [9, 10, 14]. In order to

assess the performance of MOSFLA, we

compare its results with those obtained by

Barros and Araujo [10] using NSGA-IIV,

as our study is built around the same

dataset. The findings of the comparison

are presented in Table 7. In terms of

Contribution (Ic), it is evident that NSGA-

IIv yielded greater values of 0.2636 and

0.0848 in the ACAD and WMET cases,

respectively. Nevertheless, when the

project instances become larger,

MOSFLA outperforms NSGA-IIv in

terms of performance value. Specifically,

MOSFLA exhibits greater values of

Contribution (Ic) in WAMS, PSOA,

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

OMET, and PARM, with the margin rising

in direct proportion.

The data suggests that there is a positive

correlation between project size and the

performance of MOSFLA, as the former

increases, the latter also increases.

Conversely, NSGA-IIv exhibits a negative

correlation with project size, as its

performance drops as projects grow larger.

The graphical representation of the

observed change may be seen in Figure 6.

The aforementioned outcome highlights

the efficacy of MOSFLA in addressing

issues of significant magnitude. In all

project instances, MOSFLA exhibited

superior performance compared to NSGA-

IIv, as evidenced by its higher

Hypervolume (IHV) values and lower

Generational Distance (IGD) values.

Notably, MOSFLA achieved the greatest

IHV of 0.4489 in the PARM project

instance, while also attaining the lowest

IGD value of 0.0065 in the WMET project

instance. The graphical representation of

the Inverted Hypervolume (IHV) of

MOFLA and NSGA-IIv is depicted in

Figure 7.

CONCLUSION

A novel memetic method, utilising the

Multi-Objective Shuffled Frog Leaping

method (MOSFLA), has been devised for

the purpose of multi-objective overtime

planning in software engineering projects.

The Overtime Planning Problem is

expressed as a three-objective

optimisation problem that encompasses

the dynamics of error creation and

propagation resulting from the

implementation of overtime, utilising

simulation techniques. A modified version

of the Multi-Objective Simulated Flight

Algorithm (MOSFLA), known as

HyperVolume (IHV) and Contribution

(IC), has been specifically developed for

the purpose of addressing the overtime

planning problem at hand. The method

utilises a self-adaptive niche-based

archiving strategy in order to preserve the

non-dominated solution. The algorithm

was adapted to MOO by the

implementation of efficient sorting and

memetic evolution techniques. The

algorithm's effectiveness was assessed by

empirical evaluation using a dataset

derived from real-life software projects.

The results indicate that the technique is

highly effective in the management of

medium and large-scale software

development. Notably, it surpassed all

existing overtime management strategies

across many quality measures. The

memetic technique demonstrates superior

performance compared to the state-of-the-

art approach (NSGA-IIv) across all quality

indicators. In subsequent research

endeavours, we want to conduct a

comprehensive examination of the effect

magnitude and statistical significance of

the findings through the utilisation of

inferential statistical techniques.

Additionally, our research aims to

empirically assess the impact of overtime

on the programme's quality by employing

software quality prediction tools [29-31].

Nomenclatures

Cd Crowding distance

Co Cost of overtime hours

Cr Cost of regular hours

dij Euclidean distance of objective space

between the ith and

jth non-dominated solutions F(i)

Sharing Fitness

IC Contribution

IGD Generational Distance

IHV Hypervolume

MOFit Multiobjective Fitness Function

Sh(dij) Sharing function of ith and jth

non-dominated solutions xb Local best

frog

xg Global best frog

xw Worst frog

Yk Kth memeplex

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

Greek Symbols

 Sharing constant-coefficient 𝜎𝑠h𝑎𝑟𝑒

Niche radius

Abbreviations

CPM Critical Path Management DAG

Directed Acyclic Graph DP DePendency

FP Function Points

MAR MARgarine Management

MOO Multi-Objective Optimization

MOSFLA Multi-Objective Shuffled

Frog-Leaping Algorithm NSGA-II Non-

dominated Sorting Genetic Algorithm II

OH Overtime Hours

OMS Overtime Management Strategies

OPP Overtime Planning Problem

REFERENCES

Oladele, R.O.; and Mojeed, H.A. (2014). A

shuffled frog-leaping algorithm for

optimal software project planning.

African Journal of Computing and

ICTs, 7(1), 147-152.

Ren, J. (2013). Search based software project

management. Ph.D. Thesis.

University College London, London,

United Kingdom.

Patil, N.; Sawanti, K.; Warade, P.; and Shinde,

Y. (2014). Survey paper for software

project scheduling and staffing

problem. International Journal of

Advanced Research in Computer and

Communication Engineering, 3(1),

215-324.

Chang, C.; Christensen, M.; and Zhang, T.

(2001). Genetic algorithms for

project management. Annals of

Software Engineering, 11(1), 107 -

139.

Alba, E.; and Chicano, F. (2007). Software

project management with GA’s.

Information Sciences, 177(11),

2380-2401.

Gueorguiev, S.; Harman, M.; and Antoniol, G.

(2009). Software project planning

for robustness and completion time

in the presence of uncertainty using

multi objective search based

software engineering. Proceedings

of the 11th Annual Conference on

Genetic and Evolutionary

Computation (GECCO). Montral,

Canada, 1673-1680.

Stylianou, C.; and Andreou, A.S. (2013.) A

multi-objective genetic algorithm for

intelligent software project

scheduling and team staffing.

Intelligent Decision Technologies,

7(1), 59-80.

Ferrucci, F.; Harman, M.; Ren, J.; and Sarro,

F. (2013). Not going to take this

anymore: Multi-objective overtime

planning for software engineering

projects. Proceedings of the

International Conference on

Software Engineering (ICSE).

Piscataway, New Jersey, United

States of America, 462-471.

Barros, M.d.O.; and Araujo, L.A.O.d.J. (2016).

Learning overtime dynamics through

multiobjective optimization.

Proceedings of the Genetic and

Evolutionary Computation

Conference (GECCO). Denver,

Colorado, United States of America,

1061-1068.

Nishikitani, M.; Nakao, M.; Karita, K.;

Nomura, K.; and Yano, E. (2005).

Influence of overtime work, sleep

duration, and perceived job

characteristics on the physical and

mental status of software engineers.

Industrial Health, 43(4), 623-629.

Karita,K.;Nakao,M.;Nishikitani,M.;Iwata,T.;

Murata,K.;andYano,E.(2006). Effect

of overtime work and insufficient

sleep on postural sway information-

technology workers. Journal of

Occupational Health, 48(1), 65-68.

Sarro,V.;Ferrucci,F.;Harman,M.;Mannay,A.;

andRen,J.(2017).Adaptive multi-

objective evolutionary algorithms for

overtime planning in software

projects. IEEE Transactions on

Software Engineering, 43(10), 898-

917.

Deng, J.; and Wang, L. (2017). A competitive

memetic algorithm for multi-

objective distributed permutation

flow shop scheduling problem.

Swarm and Evolutionary

Computation, 32, 121-131.

Poonam, G. (2009). A comparison between

memetic algorithm and genetic

ISSN 2424-645X | Volume: 01 | Issue: 01 | 30-06-2019 | www.research.lk

algorithm for the cryptanalysis of

simplified data encryption standard

algorithm. International Journal of

Network Security and its

Applications (IJNSA), 1(1), 34-42.

Nebro, A.J.; Durillo, J.J.; Machin, M.; Coello,

C.A.C.; and Dorronsoro, B. (2013).

A study of the combination of

variation operators in the NSGA-II

algorithm. Lecture Notes in

Computer Science, 8109.

Jones, C. (2000). Software assessments,

benchmarks, and best practices.

Boston, Massachusetts, United

States of America: Addison-Wesley

Longman Publishing Co.

Abdel-Hamid, T.; and Madnick, S.E. (1991).

Software project dynamics: An

integrated approach. Upper Saddle

River, New Jersey, United States of

America: Prentice-Hall.

Eusuff,M.;andLansey,K.(2003).Optimizationof

waterdistributionnetwork design

using the shuffled frog leaping

algorithm. Journal of Water

Resources. Planning and

Management, 129(3), 210-225.

Cui, X.X. (2006). Multi-objective evolutionary

algorithms and their applications.

Beijing, China: National Defence

Industry Press.

Alejandro, H.; Miguel, A.V.; Joaquín, F.; and

Nieves, P. (2015). MOSFLA- MRPP:

Multi-objective shuffled frog-leaping

algorithm applied to mobile robot

path planning. Engineering

Applications of Artificial

Intelligence, 44, 123-136.

Rahimi-Vahed, A.; and Mirzaei, A.H. (2007). A

hybrid multi-objective shuffled frog-

leaping algorithm for a mixed-model

assembly line sequencing problem.

Computer & Industrial Engineering,

53(4), 642-666.

Elena, S.N. (2007). Performance measures for

multi-objective optimization

algorithms. Matematică -

Informatică - Fizică, 109(1), 19-28.

